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Abstract. We describe the design and initial implementation of a toolkit for 
ubiquitous computing that reduces the cost – especially in time and effort – of 
developing applications and environments, and increases the potential involve-
ment of designers and users in this process. The toolkit supports distributed ap-
plications running over multiple hosts by the creation, configuration and inter-
connection of software components (both toolkit-aware and existing compo-
nents) and components which represent physical devices and sensors. Users are 
supported by tools which provide various representations of the running envi-
ronment, plus facilities for scripting and learning by example.  

1 Introduction 

Over the last three-to-four years we have been involved in a large multi-site initiative 
to explore the development, deployment and use of ubiquitous computing environ-
ments. This has involved the realization of a number of distinct user experiences in-
cluding:  
− The development of reactive learning spaces that exploit ubiquitous computing 

technologies to promote a sense of exploration within children [1]. 
− The construction of reactive museum spaces that use ubiquitous computing devices 

to enhance the users’ visiting experience [2]. 
− The development and placement of technologies within different domestic settings 

[3]. 
The development of these experiences has involved the assembly of a heterogeneous 
collection of devices (and platforms), the placement of these devices within a given 
space and the development of facilities that allow these devices to interconnect in a 
variety of different ways. This process has also been adopted for the realization of a 
number of “outdoor” experiences including: 
− The augmenting of a physical wood with reactive technologies to promote learning 

[4]. 
− The construction of a series of mobile games that link on-line users with “on the 

street” players [5]. 
− The extension of museum visiting to consider the support for visitors exploring a 

city [6]. 
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The development of these different experiences has proven to be a costly endeavor 
with considerable effort being required to allow the construction of these reactive 
ubiquitous environments. Our experiences have shown that:  
− We have needed to integrate across a number of different hardware and software 

platforms. 
− We have needed to integrate the developed reactive space with existing facilities 

outside our control (for example museum catalogues or web based services for on-
line games). 

In order to do this we have exploited a number of lightweight communication fabrics 
(e.g. ELVIN [10]) that allow a disparate set of devices to talk to each other. However 
we have found the development to be a long term endeavor with considerable devel-
opment resources going into determining how best to interconnect devices, often at the 
cost of construction of new ubiquitous devices or the exploration of different possibili-
ties for the arrangement of devices.  

Given our overall aim of exploring the deployment and use of ubiquitous experi-
ences as a means of driving our research forward, we wish to significantly reduce the 
cost of constructing spaces that allow the deployment of ubiquitous devices and pro-
vide facilities which make the exploration of different combinations of devices as low 
cost as possible, especially in terms of human resources. This paper presents the de-
velopment of a toolkit and associated component framework that has allowed us to 
significantly reduce the cost of this development. 

2 The importance of toolkits 

The use of software toolkits has proven popular in the development of interactive 
systems [7, 8]. Their ability to reduce the cost of application development (through 
code reuse and modularity) has allowed researchers to rapidly prototype and experi-
ment with interactive systems. The emergence of these toolkits has increased the in-
volvement of designers and users in the prototyping process [9] and empowered de-
signer and users to develop customized applications [20]. 

Our challenge is how to realize an equivalent set of toolkits for ubiquitous comput-
ing that reduce the cost of development and increase the involvement of designers and 
users in the process. We are not alone in exploring the possible benefits to be gained 
from developing toolkits to support the rapid construction of ubiquitous applications.  

Generic middleware platforms such as Jini [25], and the .NET combination of 
UDDI [29], WSDL [30], and SOAP [31] can lend themselves to these types of envi-
ronments by allowing distributed devices and software applications to discover and 
communicate with one another over defined protocols. The context toolkit [11] repre-
sents an early example of a toolkit specifically developed for ubiquitous computing 
environments. It adopts a widget-based approach inspired from previous work within 
interactive systems. The toolkit demonstrates the advantages of a component based 
approach in developing context-aware applications for such environments. The Cool-
Town [32] project at HP labs is another example of an infrastructure for pervasive 
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computing. It builds upon the ubiquity of web technology, to provide access to com-
ponents through URIs and handles communication through HTTP and HTML. 

The development of these application toolkits has been complemented by the 
construction of hardware component based toolkits such as Phidgets [12, 13], Smart-
Its [14] and Motes[15] that provide a generic set of hardware devices that can be spe-
cialized to particular applications. This work has reduced the cost of hardware devel-
opment by providing a simple set of generic, stable and agreed hardware interfaces 
and protocols.  

These different forms of platforms and toolkits reduce the cost of hardware and 
software development. In order to achieve this they require developers to adopt a 
particular approach and consider their development essentially from within that par-
ticular platform or toolkit. However, the development of ubiquitous computing envi-
ronments often requires a number of different platforms and approaches to co-exist. 
The need to support heterogeneous approaches has seen a number of different re-
searchers explore how best to consider the combination of different devices and tool-
kit services. This includes the work on iStuff [16] and the event heap [17] undertaken 
as part of the iRoom project [18] and the work on recombinant computing in the 
Speakeasy project [19]. The approach we have adopted builds directly on this work by 
considering how a number of different types of ubiquitous device (each with its own 
particular approach) can be represented in such a way that they can be easily com-
bined in a language-independent manner.  

Other work has seen the emergence of interactive toolkits that attempt to lower ex-
isting barriers of application development and allow designers and end-users to be 
more closely involved in the overall development process. Examples of this include 
scripting languages such as those found in Macromedia Director [20]. The develop-
ment of these scripting languages has been complemented by learning by example 
approaches [21] that allow users to “train” interactive systems. 

A similar strategy is evident within those developing ubiquitous computing toolkits.  
For example, the work on iCap [22] provides a user oriented programming interface. 
While Speakeasy [28] provides a generic browser application to allow end-users to 
configure and construct ubiquitous computing environment. The work on Accord [23] 
presents a simple jigsaw based interface to allow end users to assemble different ar-
rangement of ubiquitous devices and services. This editor-based approach has been 
complemented by learning approaches that allow end-users to build ubiquitous appli-
cations by demonstration [24]. 

The key to our approach has been the development of a lightweight component 
toolkit which allows a number of different hardware and software systems to be inter-
connected and rapidly configured. A key driver for us is supporting dynamic ubiqui-
tous environments where the arrangement of devices can be continually revised to 
meet the needs of users. Consequently, we have developed a general component 
framework to allow us to manage the lifecycle of components – from their initial in-
stantiation within the space to their eventual demise. In the rest of this paper we pre-
sent our general toolkit model, its current implementation, our experiences of develop-
ing trial applications with the toolkit and the future challenges arising from this work. 
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3 Toolkit Model 

The toolkit considers a ubicomp application or experience to be realized as a dynami-
cally interconnected and potentially time-varying collection of hardware and software 
components, distributed across a number of machines. This section describes the de-
ployment and coordination model supported by the toolkit. The current version of the 
toolkit presumes a relatively self-contained deployment setting, such as a single home, 
with a wired and/or wireless local area network. 

3.1 Locales 

Each deployment setting (or “Locale”) – such as a home – has a single Locale Mas-
ter process. In a turn-key installation this would be running as a pre-configured service 
on a dedicated Locale Master machine or host, which might also act as a local DHCP 
server, wireless access point and internet gateway/router. The Locale Master process 
creates a shared data-space which is used for coordination and communication be-
tween the hosts participating in that Locale. The Locale Master also uses a multicast 
network discovery protocol similar to Jini’s [25] to advertise the coordination data-
space’s existence on the local network. 

Any host on the local network can then join the Locale by running a suitable Com-
ponent Container process. Again, in a turn-key installation, this would be a pre-
configured service running on each Locale Client machine or host. Therefore, when 
using a wireless (IEEE802.11) network, a new client machine could be added to the 
Locale simply by configuring its wireless networking (network name and any required 
security parameters).  

 
Fig. 1. Top-level Locale deployment model 

In addition to normal Locale clients, various Locale Management Tools can also 
(usually temporarily) join the Locale, allowing interactive monitoring, trouble-
shooting and explicit configuration of the various aspects of the Locale. See figure 1. 
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3.2 Hosts and Containers 

Varying numbers of Locale Client hosts can participate in a Locale. The various 
physical elements – sensors, displays and actuators – of the system would then be 
physically (or wirelessly) connected to these hosts. Each host can run any number of 
Component Container processes. Each Container process runs within the context of 
the host operating system and provides an environment within which toolkit software 
Components can exist and be managed. On start-up, each Container will discover the 
Locale data-space, and then uses this for distributed communication and coordination.  

3.3 Components and Capabilities 

The main purpose of a Container process is to allow the creation, management and 
coordination of software components on that particular host. These software compo-
nents need not be written with any specific knowledge of the toolkit, since language 
reflection facilities can be used to host arbitrary software components (e.g. JavaBeans 
[26] in Java or CLR objects [27] in C#). However components can also make use of 
toolkit APIs to – for example – to become actively involved in managing and recon-
figuring the Locale. 

Our experiences in the development of a range of different ubiquitous computing 
environment suggest a number of typical kinds of software component: 
− Device driver interfaces for physical extension points on the host, e.g. USB port, 

COM port; 
− Software proxies for locally attached or associated physical devices, e.g. individual 

Phidgets [13] or SmartITs [14]; 
− Software-only services, e.g. a media viewer application, or interfaces to information 

repositories; 
− Application behavior and “glue” components, e.g. scripts or learning/mapping 

components. 
Some containers may be preconfigured to create certain Components on start-up, 

for example components to manage physical extension points such as USB ports. In 
other cases components may be created and destroyed directly by the Container or by 
already-active Components, for example when a new Phidget is connected to or dis-
connected from the host. In other cases the components will only be created in re-
sponse to requests received via the data-space from other components or applications, 
for example a script component required as part of a particular application.  

In any case the Container will advertise its ability to create Components of a certain 
type by maintaining a “Capability” data-item in the Locale data-space. This allows 
other applications and components – such as Locale Management Tools – to inspect 
the Locale data-space and determine (a) which Containers are currently available 
within the Locale and (b) what kinds of Components those Containers can create and 
manage (see figure 2(1)). 
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3.4 Request-based Component Life-cycle Management 

The Locale data-space provides strong support for the sharing of stateful information, 
i.e. data-items. Any client of the data-space can add data-items to the data-space, and 
other clients can observe these – and their modification and removal – via a pattern-
matching observer interface. Consequently, the data-space decouples information 
producers and consumers, both in space – they may be in different processes on dif-
ferent hosts – and in time – the data-item may remain in the data-space for an ex-
tended period of time, remaining available to observation and matching. The data-
space also allows system inspection for a range of purposes including debugging, 
monitoring and dynamic adaptation, as well as for anticipated data exchange patterns. 

To make the most of this facility the toolkit adopts a common idiom for communi-
cating and representing requests and responses within the data-space: 
− Each request (for example the request for a particular Container to create a particu-

lar Component) is represented by a data-item in the data-space, which is maintained 
there for as long as the requesting component maintains an interest in that Compo-
nent (see figure 2(2)); 

− Similarly, each response (for example an advert indicating that a particular compo-
nent now exists and is active) is represented by another data-item in the data-space, 
which is also maintained for as long as the thing to which it corresponds exists (see 
figure 2(3)). 

 
Fig. 2. Request-based Component Life-cycle Management  

Note in particular that the response persists for as long as the Component exists; 
consequently a late joiner to the Locale can easily find existing Components. Simi-
larly, the request persists until the Component is no longer required (not just until the 
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3.5 Component Model 

A Component is the basic unit of deployment, management and coordination in the 
toolkit. A Component is a well-defined unit of functionality, which has a well-defined 
interface to external functionality – either that it requires or that it provides. The ab-
stract Component model that we have chosen is compatible with the JavaBeans [26] 
model and COM/CLR [27] Component model, and others.  

 
Fig. 3. Abstract Component Model 

The model defines the interface provided by a component in terms of three styles of 
potential interaction: 
− The Component may have zero or more properties, i.e. named values, that charac-

terise it. Readable properties expose aspects of the internal state or configuration of 
the Component, while writeable properties allow the Component to be configured 
or interacted with. Readable properties are typically active, i.e. they generate events 
when they are modified by the component, so that they can be monitored by other 
Components. This corresponds to JavaBean and C# properties. 

− The Component may be (a) a producer and/or (b) a consumer of particular kinds of 
events. Unlike properties, events are ephemeral and a late-joining observer will not 
have access to already-emitted events. This corresponds to a JavaBean implement-
ing (a) add/removeXListener methods or (b) the XEventListener interface, or to a 
C# object with (a) an event or (b) an event delegate. 

− The Component may (a) implement (“provide”) a certain API, i.e. a set of methods, 
or (b) be able to use (or require the use of) a certain API as provided by some other 
component. This corresponds to a JavaBean or C# object (a) implementing a public 
interface or (b) having a writeable property of the type of that interface. 
The Component Container is responsible for mapping between the abstract compo-

nent model and its realization in a particular language and native component technol-
ogy.  
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3.6 Component Interactions 

The Component Container is also responsible for all interactions between non-toolkit-
aware components. Firstly, the Container must make visible various aspects of its 
current Components via the data-space. In addition to the Component Advert that we 
have already seen, the Container will also create Component Property data-items in 
the data space to reflect the current value of Component properties, and will map 
component emitted events to data-space events if required. 

In addition to this, the Container is also responsible for implementing any connec-
tions to the components that it hosts and manages, which are requested via the Locale 
data-space. The potential interactions in the abstract component model are: 
− A writeable property (an input) on one component might be slaved to the value of a 

readable property (an output) on another component; 
− A component which implements a listener for a certain kind of event may have this 

triggered when another component emits that kind of event; 
− A component which makes use of a particular API (interface) may be given a (pos-

sibly remote) reference to another component which implements that API so that it 
can invoke methods on it. 

 
Fig. 4. Linking Component Properties 

For example, the linking of a writeable (input) and a readable (output) property is 
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the source Component Property and (3) apply this value to the local (destination) 
Component Property, which it turn (4) will be visible in the data-space. 
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3.7 Model Dynamics 

The model shares the current state of the Locale and its components, properties and 
interconnections through data-items in the data-space. In general it is possible for 
hosts, Containers, Capabilities, Components, Properties and Interconnections to be 
added and removed during the execution and running evolution of the application or 
experience. The actual logic for responding to changes and performing re-
configurations is assumed to be encapsulated in a subset of the current components, 
which themselves are subject to management within the same framework. In many 
cases, such components will also require direct access to the toolkit APIs, in order to 
monitor aspects of the Locale which are not directly available via their current explicit 
interconnections.  

4 Implementation 

The current toolkit implementation has two Container implementations, one in Java 
which hosts JavaBeans as Components, and one in C# which hosts instances of Com-
mon Language Runtime (CLR) classes as Components. Each Container provides map-
pings to and from the common abstract model described above. At present the Java 
Container supports dynamic Component life-cycle management through Capabilities 
and Component Requests, and supports interconnection through readable and write-
able Properties. The C# Container currently also supports interconnection through 
readable and writeable Properties. Components in both Containers can interact 
through a common Java Locale Master and data-space.  

As well as the programmatic APIs, end-user and developer tools are also required 
to make these environments and applications more readily configured and managed. In 
particular, we wish to support the construction and management of applications by 
non-programmers such as artists, designers and curators.  

The current toolkit provides two graphical interfaces to the state of the Locale: a 
generic browser and editor, and an abstract activity display. The generic 
browser/editor joins and inspects a running Locale and uses the information in the 
Locale data-space to allow the user to: 
− View the currently advertised Capabilities (figure 5(a)) and create a Request for a 

Component corresponding to one of those Capabilities; 
− View the currently active Components, and their current Properties and property 

values (figure 5(b)); 
− View the current Property Link Requests and a simple connectivity graph showing 

Components and their current interconnections (figure 5(c)); and 
− Create a Property Link Requests between any two components’ properties. 

The abstract activity display provides an example of a more impressionistic or am-
bient display of Locale activity, in which current Components, Properties and inter-
connection activity are visualized as a changing field of abstract shapes (figure 5(d)). 
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5 Sample Applications 

This section walks through the construction and operation of two simple applications 
using the current version of the toolkit and some of the currently available compo-
nents. The applications as described are complete and operational in the current im-
plementation. The test applications took their inspiration from arrangements of ubiqui-
tous devices evident within our existing experiences. However, in contrast to these 
existing experiences where these arrangements took weeks and even months of cod-
ing, the assembly of components and services described in this section took minutes or 
hours. 

The machines and devices employed in the applications are illustrated in figures 5 
and 6. Host A is running the Locale Master process and data-space, plus a Java Con-
tainer which is capable of hosting a camera component (which publishes images 
grabbed from an attached USB camera as still-image URLs), and a SmartIT compo-
nent (which exposes the sensor values being returned from directly and indirectly 
attached SmartIT devices). Host B is running a C# Container which is preconfigured 
to run a Phidget Host Manager Component; this uses the Phidget COM API to dy-
namically create Proxy Components for all currently attached Phidgets, in this case an 
RFID reader and an interface board (with a single analogue slider attached). Host C is 
running another Java Container, including the Capability to create a media viewer 
component, which can display various forms of content including images, movies, 
documents, and presentations. The Tool/Browser machine runs the generic 
browser/editor application. 

5.1 A Remote Controlled Camera 

The first example application is a remote controlled camera (see figure 5). Using the 
browser/editor running on a wireless laptop the user views the advertised Capabilities 
(figure 5(a)) and sees that Host A advertises (amongst other things) SmartIT and 
Camera Capabilities. The user issues requests for each of these on Host A. There is 
also a media viewer Capability on Host C, which the user also requests. The corre-
sponding Containers instantiate the SmartIT, camera and media viewer Components. 
The SmartIT component uses Host A’s serial port to communicate with the attached 
SmartIT, and via that to communicate with other nearby SmartITs (SmartITs have 
their own simple peer-to-peer radio protocol). The camera component uses standard 
OS facilities to interface to the local USB camera.  

The user now switches to the running Component view (figure 5(b)), and can in-
spect the current Properties of these three components. The SmartIT has a number of 
read-only (output) properties corresponding to the various sensors on the wireless 
SmartIT; the camera has one read-write (input) property, “CaptureState”, which 
causes it to take a grab a picture, and one read-only (output) property, “url”, which it 
updates each time it grabs an image with a new dynamically generated HTTP URL 
from which that image can be obtained (the Container incorporates a simple HTTP 
server). The media viewer component has two input properties and two output proper-  
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ties: “url”, the URL of the current content to be displayed, “CurrentPosition”, the 
viewers current position within the current content (e.g. slide number or movie time), 
“MinimumPosition”, the start position of the current content, and “MaximumPosi-
tion”, the end position of the current content. 

The user double clicks on (for example) the “OutTouch” output property of the 
SmartIT component, and is presented with a dialogue that allows them to connect this 
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to another property; they choose the “CaptureState” input property of the camera 
Component. In the same way they connect the camera “url” output property to the 
media viewer “url” input property. 

In the physical environment, the user now touches the touch sensor on the wireless 
SmartIT (figure 5(e)). The SmartIT regularly broadcasts its current state, and this is 
received by the other SmartIT connected to Host A’s serial port and passed on to the 
SmartIT component. The SmartIT component (a normal Java Bean) changes its “out-
Touch” property from 0 to 1, and the property change event causes the corresponding 
Property data-item to change value from 0 to 1. The camera component Container has 
been monitoring this property because of the Property Link Request from it to the 
camera “CaptureState” property, and now sets the camera Component property ac-
cordingly. The “CaptureState” setter method of the camera component responds by 
grabbing an image from the camera and making it available from that Container’s 
built-in web server; the new URL is used to update the camera “url” property. The 
Container observes this change and updates the corresponding Property data-item in 
the Locale data-space. In the same way, this change is observed by the media viewer’s 
Container, which sets the media viewer’s “url” property accordingly. The media 
viewer now downloads the image and displays in on Host C’s display. 

5.2 A Tangible Media Viewer 

A second example application creates a simple tangible media viewer application. The 
user constructs it using the toolkit browser/editor as above. The user has a media 
viewer component running as in the last example. From the capabilities advertised on 
Host C they also request a Simple Association Learner component, which learns sim-
ple mappings between one input and one output. The user plugs the relevant Phidgets 
into Host B’s USB port(s), and the pre-configured Phidget Host Manager running in 
the Host C’s C# Container creates the corresponding proxy components, in this case 
an RFID Phidget Component, a Phidget Interface Component and various sensor 
components including a Phidget Single Sensor Component corresponding to the slider 
device. From their local Capabilities the user also requests a File Exporter Compo-
nent, which allows them to publish local files as HTTP URLs.  

Inspecting the running component view, the user links together the components as 
shown in figure 6. The user now places an RFID tag on the Phidget RFID reader, 
which causes the RFID reader Component’s “CurrentTag” property to change. This is 
propagated to the Learner’s “input” property. At this stage the Learner does not know 
an output for this particular input and outputs null. The user then uses the local GUI of 
the media exporter to publish a media file (e.g. a Powerpoint presentation) that is 
currently on their laptop as a URL. This changes the media exporter’s “output” prop-
erty to the newly generated URL, which is propagated to the Learner’s “trainingOut” 
input; this causes the Learner to associate the current “input” (the RFID tag ID) with 
this preferred output value (the presentation URL). The Learner correspondingly 
changes its “output” to the new media file URL, and this is propagated to the media 
viewer which loads and displays the presentation from the laptop. 
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Fig. 6. Tangible Media Viewer 

The user may now place other RFID tags on the RFID reader and associate them 
with other media files from the media exporter. Whenever an RFID tag is placed on 
the reader, the Learner will output the corresponding learnt URL and the associated 
file will be displayed by the media viewer.  

The user also wishes to navigate within the content using the Phidget slider device. 
The Phidget Sensor Component’s “SensorState” output property varies between 0.0 
and 1.0, and user wishes to map this to the full range of the current media clip, as 
given by the “min” and “max” properties of the media viewer component. The user 
programs the Float Function Component – a simple script-like component – to map 
from the slider’s range to the full range of the presentation. Now when the user moves 
the slider device and the position within the media clip changes accordingly. 
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6 Discussion and Future Work 

6.1 Initial Performance and Scalability 

The underlying data-space used for communication has a typical end-to-end latency of 
around 30ms, and a throughput of around 1000 events per second on a typical 1GHz 
PC. For example, the Tangible Media Viewer application exhibits a latency for navi-
gation within the media clip between moving the slider and repositioning the media of 
around 50ms. This level of performance is quite adequate for current developments 
and small to medium scale Locales. However further work – for example using multi-
ple data-spaces – would be required to scale the system to 100s or 1000s of hosts and 
devices per Locale. 

6.2 Persistence 

The current version of the toolkit does not yet address persistence of experiences. Two 
aspects of persistence are required. First, the data-space itself must be persistent in 
order to make Component Requests and Property Link Requests persistent. This is 
being addressed in other work on the data-space platform. Second, any additional 
Component state must also be made persistent, such as the mappings learnt by the 
Simple Association Learner. One way in which this might be done would be to expose 
this internal state through additional properties, which could then be made persistent 
in the data-space. Alternatively, the Container will need to be extended to provide its 
own persistence facilities with regard to the Components that it is hosting. 

6.3 Physical/Digital Identification and Registration 

There is a common problem with maintaining a consistent (user) view between the 
physical sensors and devices present and their software Component representations. 
This problem has several aspects. 

First, some hardware ports and protocols have no standard support for plug and 
play, so it is not possible to automatically determine what devices and sensors may 
actually be present at any moment. This is the case, for example, with the serial port 
used by the SmartITs.  

Second, some hardware devices and sensors have no standard self-identity, and so 
it is not possible to automatically match a particular reading with a specific hardware 
device. For example, although the Phidget Interface device has a unique ID, the indi-
vidual sensor sliders do not, and the particular physical sliders that needs to be ma-
nipulated can only be determined by explicitly tracing the cabling between the slider 
and the numbered connection points on the Interface board or by manipulating a spe-
cific slider and watching for a correlated change in the component properties. 
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Third, the identifiers that are available within the software may have no simple 
mapping to externally visible characteristics. For example, the Phidget Interface de-
vice has a unique ID, but it is only made physically visible if it is written on a label 
and physically stuck onto the device. 

Fourth, the user will often want to identify devices and sensors in other frames of 
reference, for example “this slider” (the user points in space or touches the slider in 
question). How does the system determine which slider is “this slider”? 

We propose to use the Locale data-space as a common context within which we can 
not only directly represent and manage the software Components, but within which we 
can also exchange information about those components, such as physically where they 
might be, what they might look like, and so on. In this way, more sophisticated tools 
and interfaces could support more flexible and user-oriented mappings between physi-
cal artifacts and their computational analogues. 

6.4 Extensibility 

The toolkit currently allows new Java components to be added to the running system 
in the form of locally deployed JAR files. However there is currently no standard way 
of performing and managing this deployment within the running system. For example, 
ideally device Components should be automatically installed when new devices are 
introduced to the system (as with Plug and Play). Similarly, users should have simple 
mechanisms to add new software Capabilities to their Locale, such as new media han-
dling components. For example, this might be done through tokens (such as special 
management RFID tags) identifying remotely available component downloads, or 
through mobile storage media such as USB memory devices or memory cards. 

6.5  User Interfaces 

The current user interfaces are prototypes for development and testing, but they al-
ready make apparent some of the contrasting and complementary representations or 
views that might be required for various kinds of use. The generic browser/editor has 
distinct views for Capabilities (as a tree), active Components and their Properties (as a 
tree), current links to and from a selected Component (as a table), and active Compo-
nents and their interconnections (as a 2D graph layout). The abstract Locale visualiza-
tion provides a complementary “ambient”-style view of Locale complexity and activ-
ity.  

For end-user programming and configuration there is also a clear need for much 
simpler and more accessible interfaces, such as the Jigsaw Piece component editor and 
Tangible linking tool used in the Accord project [23]. There is also ongoing work at 
other partner sites considering the design possibilities of other approaches to pro-
gramming and configuration within a specifically domestic setting. 
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6.6 Programming, Scripting and Training 

The toolkit model makes a relatively strong distinction between the creation of com-
ponents, and the assembly and configuration of applications or environments using 
such components. In most cases components will be created by programmers within 
some software development environment that is outside the scope of the toolkit. How-
ever component assembly and configuration should be accessible to users without 
specific programming skills, with the support of various tools that are part of the tool-
kit. 

The presence of scripting components – of which the Float Function is a simple ex-
ample – provide a bridge between component development and configuration, allow-
ing relatively light-weight specification of elements of functionality during the de-
ployment process, supported by the toolkit. 

Components which learn and/or can be trained – such as the Simple Association 
Learner – also provide a general and flexible mechanism for tailoring the behavior and 
responsive characteristics of the application again without resort to programming. 
This appears to be a particularly helpful and accessible approach for end-users and 
other non-programmers [24] (as well as being faster and less error prone than explicit 
programming for some classes of behavior). This is a particular emphasis of the ECK 
activity which involves various partner sites.  

6.7 Dynamic and Federated Environments and Applications 

As already noted, this first version of the toolkit presumes a reasonably self-contained 
and well-defined (all be it time varying) deployment situation, such as a single house 
or museum. We believe that much of the model and infrastructure will generalize to 
also support more dynamic and federated deployment settings.  

Our first approach to this issue will be to add explicit support for multi-Locale dis-
covery, and for stereotypical interactions between Locales. For example, an autono-
mous wearable computer which is not exclusively tied to a particular Locale would be 
become its own Locale. Peer-to-peer-aware components within the wearable computer 
Locale and – for example – a house Locale would perform mutual discovery and dy-
namic partial bridging between the respective Locales to provide a framework for 
dynamically negotiated coordination.  

6.8 Toolkit Availability 

The toolkit source can be downloaded from a public CVS server, details of which are 
available at http://www.equator.ac.uk/Challenges/Infrastructure/Equip.htm. This in-
cludes the run-time, tools and components as presented in this paper.  
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